Hw5: ¹⁴ Let $m(E) \leq +\infty$, $M_{+}^{++}(E) \neq f: E \rightarrow [0,\infty]$, measurable. For each $n \in N$, let $A_{n,k} = \left\{ x \in E : \frac{k-1}{2^{n}} \leq f(k) < \frac{k}{2^{n}} \right\}, \quad k = 1, 2, \cdots, 2^{n}, \cdots 2^{n}, n2^{n}, n2^{n}, \dots 2^{n}, n2^{n}, \dots 2^{n}, n2^{n}, \dots 2^{n}, n2^{n}, \dots 2^{n}, \dots 2^{n}, n2^{n}, \dots 2^{n}, \dots 2^{n},$

- closed or not for F)

4. Let Ø = F = IR be closed and f: F-> IR be utz. Show (the Tieze Extension Th): f can be continuously extended to be on the whole of IR, via the following elementary method: lit G:= IRIF (\$\$, wig) = Ü, In disjoint open niterrals, by Then InVINGFVN (In is the closed milinal, the closure of In), and f can be extended to I so as $\overline{f}|_{F} = f, d \overline{f}$ is "linear" on each In (outs); hence f is us: VXOER, Fisus at Xo, tutis fis right - to (& lift - its, similarly)

For the right its of
$$\chi_0$$
 we assume w.e.g
 $(trivially true otherwise that $\tau_0 \in F$
and that $\forall \delta > 0$,
 $V_{\delta}^{+}(\pi_0) \stackrel{(\pi_0, \pi_0, \tau_0)}{=} f_{\delta}(\pi_0, \pi_0, \tau_0)$ both F and G . (#)
Let $\varepsilon > 0$. By the given containing of f on F
 $\exists \delta_{0} > 0$ s.r.
 $(*) |f(\pi) - f(\pi_0, \tau_0)| < \varepsilon \quad \forall \ x \in F \land [\pi_0 - \delta_0, \pi_0 + \delta_0]$
By (#), we take $\pi_0' \in F \land (\pi_0, \pi_0 + \delta_0)$,
 $\pi_0 \quad \pi_0' \quad \pi_0 + \delta_0$
and it follows that
 $(*) |f(\pi) - \overline{f}(\pi_0)| < \varepsilon \quad \forall \ x \in (\pi_0, \pi_0')$ (so right of τ_0)
 $(*) |\overline{f}(\pi) - \overline{f}(\pi_0)| < \varepsilon \quad \forall \ x \in G \land (\pi_0, \pi_0')$ (so right of τ_0)
Since this already true if $x \in F$, we only need
to consider the case $x \in G \land (\pi_0, \pi_0')$ with
 $\chi \in In$ for some $n \cdot N_{0W}$, as $\pi_0, \pi_0' \in F$,
this entails that $\chi \in In \subseteq (\pi_0, \pi_0')$$

The end-pt3 of In are not in
$$\mathfrak{F}$$
 so
 $\overline{x} \in F$ and it follows from (*) that
 $\left| f(\overline{x}) - f(x_0) \right| < \varepsilon$
 $\left| \overline{f}(\overline{x}) - \overline{f}(x_0) \right| < \varepsilon$
and, by the def of \overline{f} on \overline{In} , it follows
that
 $\left| \overline{f}(\cdot) - \overline{f}(x_0, \tau) \right| < \varepsilon$ on $\overline{In} \rightarrow \pi$
so (**) is check for $x \in \overline{f_n}(x_0, x_0')$, and
hence $\forall x \in (F \cup \overline{f})_n(x_0, x_0') = (x_0, x_0')$,
the whole interval.
 5^* check (similarly to $\varepsilon + 4$) the